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Abstract—We have designed and implemented a framework
for the development and deployment of multi-agent task allo-
cation solutions, with particular awareness of the operational
constraints encountered by Unmanned Maritime Systems (UMS).
This framework, which we call the Distributed/Decoupled Col-
laborative Autonomy Framework (D2CAF), is a set of software
modules that allow researchers to develop the underlying task
allocation algorithms largely independent of engineering con-
cerns (communications, vehicle interface, etc.). The framework
is distributed as it provides tools to perform over-the-network
(including underwater) communications between instances of
the framework hosted on physically disconnected agents. The
framework is decoupled in that it realizes an abstract separation
between the invocation of a task and its execution. D2CAF
has been used in several at-sea campaigns, deployed on real
autonomous underwater vehicles (AUVs) promoting the execution
of MCM missions.

Index Terms—multi-robot systems, multitasking, planning,
unmanned autonomous vehicles, unmanned underwater vehicles,
mine countermeasures

I. INTRODUCTION

With the increasing capability and performance of un-
manned assets, the employment of those systems in networked
cooperative operations has become likewise increasingly at-
tractive to researchers and operators. Networked fleets of
unmanned assets can provide greater coverage rates, greater
communications ranges, and more unit-level redundancy than
their monolithic analogues. Such a networked fleet, with
elements operating in parallel, maps well to scenarios that
have a dynamic mixture of tasks to be executed that may be
separated in time and space.

From an implementation perspective, the infrastructure that
must be built to achieve a collaborating, cooperating, net-
worked fleet is not unsubstantial. The primary integration
difficulties include managing network communications, which
bring an entire field of sub-problems [1], and interfacing non-
standard system interfaces.

Above all, D2CAF is meant to provide tools for rapid
development and deployment of prototype algorithms for
networked robotic task management in real scenarios and
systems. Specifically, we rely on lower layer solutions to
implement task capabilities in terms of a service contract. In
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Fig. 1. The D2CAF framework as it is typically integrated on an AUV.

this way we separate the responsibility for task allocation and
handling from the individual platform-specific implementation
details of task execution.

II. ARCHITECTURE

D2CAF consists of a extensible plugin architecture, where
developers implement core interface functionalities. Primarily,
these functionalities are that of task and collaborator man-
agement. Tasks are the atomic unit of action that are com-
municated within the D2CAF framework. The definition of
tasks and their descriptive attributes are themselves extensions
that are implemented by researchers. Collaborators are the
resources within the fleet that may execute tasks. We consider
that collaborators are not known a priori, and allow for the
possibility of ad hoc coalition building.

A high level representation of how D2CAF is integrated into
an autonomous vehicle, is shown in Fig. 1. The framework sits
at the top level of vehicle primitive invocation. This is above
an autonomy framework, which exposes a task interface to
D2CAF. This task interface is responsible for exposing the
task capabilities as available services to D2CAF.

The autonomy framework is responsible for processing
task execution requests by performing the requested task,
and reporting back results (and progress) to the upper layer.
This autonomy framework, in our case, is generally capability
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Fig. 2. The top level UML class diagram for a D2CAF runtime. There are
always one of each of the TaskManagers, CollaboratorManagers,
and CommunicationManagers for each Application, and a variable
number of Agent objects.

dependent — that is, the particular single-agent framework re-
flects what capabilities are embodied in the system, but should
have minimal bindings to the specific underlying vehicle
system1. This underlying vehicle is depicted in the lower two
layers, a vehicle abstraction layer which abstracts the vehicle
hardware/software interface. Both D2CAF and the single-
agent autonomy layer interact with a world model, which is
a generic, conceptual container where information regarding
the state (current, past and possibly future) of the world are
stored. Lastly, there is a connection with a communications
stack, which manages a network connection using whatever
technologies are available.

A. Features

1) Distributed deployment: Though deployments may be
composed into a monolithic, centralised task handler, D2CAF
has been ultimately formulated to provide distributed in-
stances that communicate via available network channels.
Each D2CAF instance is composed at runtime, based on a
configuration file and a matching application factory mecha-
nism, as shown in Fig. 2. This application, at its base, con-
sists of a CommunicationsManager, a TaskManager, a
CollaboratorManager, and possibly a number of Agent
objects. In a fully-distributed scenario, there is a single Agent
object in each D2CAF instance co-located with the vehicles
for which they are performing task arbitration.

2) Domain independence: Our framework explicitly sepa-
rates the task dictionary, itself coupled to the domain specifics,
from the interconnecting tools. This allows users to expand or
implement new task concepts and still reuse much of the exist-
ing infrastructure. A developer who wishes to deploy D2CAF
in a new domain simply needs to develop the particular task
dictionary that describes that domain.

3) Detached deployment: Some systems, for engineering
and operational reasons, may not be open to have software

1This delineation is made in order to increase the reusability of the
components in the single-agent autonomy architecture by decreasing the
coupling between the implemented autonomy capabilities and the specific
hardware.

(such as D2CAF) integrated directly onboard. This is a com-
mon attribute of what we refer to as operational systems,
i.e., systems that are specifically used to accomplish a given
task and are not open, modifiable research platforms. When
these operational systems are available to be used, without
hosting software onboard, a D2CAF instance that interfaces
with a task execution service may be run in a detached
mode, where the task execution service layer is presented in a
physically different location than where the task is executed.
This allows task invocation to be performed through existing,
single-agent command and control infrastructure (e.g. [2]), and
thus preserving the native integrity of operational systems.

From a deployment perspective, this means that the ar-
chitecture makes use of the multiplicity flexibility of the
Agent object described in Fig. 2. Inside of a D2CAF network,
there are as many Agent objects as there are collaborating
squad elements. These agents, which act in the interest of
their assigned element in participating in the task allocation
mechanism, can be deployed in different assets than that which
they represent. For example, we have run a D2CAF daemon on
a gateway buoy with an Agent that represents an operational
asset asset.

4) Platform independence: The delineation between the
multi-agent task handling layer (D2CAF) and the single-agent
autonomy layer in Fig. 1 means that D2CAF is decoupled
from the platform itself. The single point of interface between
the two layers are the task execution interface, where the
autonomy system performs tasks in response to requests.

5) Ad hoc coalition formation: We have implemented a
simple synchronisation mechanism to allow for the ad hoc
composition of a squad. During the synchronisation state, units
suspend task execution and periodically transmit identifying
information about their own task capabilities and their cur-
rent conception of the squad size. Any squad elements that
overhear broadcast synchronisation messages with squad size
information that doesn’t match their own model transitions
to the synchronisation state. The elements transition out of
the synchronisation state after all overheard messages report
consensus on the total squad size.

6) Explicit non-features: Moreover, D2CAF specifically
does not aim to address some sub-problems, for which we
consider other approaches, architectures or solutions to be
more appropriate:

a) Communications stack: D2CAF explicitly does not
attempt to address all specific elements of underwater network-
ing, and instead relies on other infrastructure to provide end-to-
end connectivity. In the OSI model, D2CAF is an application
integrating with the communications stack at the application
layer, thus adhering to ‘separation of concerns’ [3]. CMRE
has other specific solutions that are meant to address the
particularities of underwater communication and networking,
such as [4], [5] — these exist in the ‘Communications Stack’
block in the lower right of Fig. 1.

What D2CAF does provide to developers is a flexible
subscriber-codec infrastructure where codecs that encode and
decode data arriving from external data streams are registered
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Fig. 3. An example of codec implementation in D2CAF, where the
Codec interface class is implemented by specific concrete classes (e.g.
StatusMsgCodec) that generate the underlying data structures (e.g.
StatusMessage). Subscribers use the CodecRegistry to register for
specific codecs by key, and a CommunicationsManager calls the
findCodec method for messages that arrive from a configurable set of data
streams.

in a registry for use by many different subscribers inside
D2CAF. An example of a few codecs, and how they relate with
the registry and subscriber objects, is shown in Fig. 3. We have
found that such flexibility is frequently required when dealing
with a heterogeneous set of assets, where the interfaces, or
‘hooks’ can vary greatly between platforms. This additionally
decouples the encoding logic from the underlying data model
of messages, further increasing reusability and modularity.

b) Task execution: D2CAF also does not purport to
provide advanced task execution strategies. That is, the respon-
sibility of actual performing the work associated with a task is
the responsibility of a specific autonomy system. The assump-
tion and paradigm of D2CAF is that the provider of such an
autonomy system can build more performant and appropriate
task execution mechanisms based on more detailed knowledge
of the internal workings. These functions are relegated to the
underlying ’single agent autonomy architecture’, depicted as
the right-center block in Fig. 1. That is not to say that elements
of D2CAF cannot be extended to fulfil this role (in fact, in our
implementation we do such a thing), but that it is not one of
the core goals.

III. IMPLEMENTATION

The implementation of the current D2CAF paradigm began
in 2017, with developments ongoing. The framework itself
has asymptotically stabilized, with the greatest activity being
focused on algorithm development and standardisation efforts.

A. Plugin Architecture

D2CAF is implemented as a plugin architecture, where
the D2CAF application is composed via dynamic loading of
modules and associated parameters from a configuration file.
The selection of the modules and their parameters at start up,
dictate the total behavior of the system. Developers can extend
or develop specific modules that address sub-functionalities of
D2CAF and simply load those at runtime.

B. Language

D2CAF is implemented in the Python programming lan-
guage, which we have found to provide more than satisfactory
performance in this application. Task allocation is a relatively
low-bandwidth endeavor, with high levels of abstraction away
from dense sensor data that may require highly efficient com-
puting. Additionally, Python allows non-expert researchers to
quickly implement task-handling algorithms with the extensive
support of scientific computation libraries commonly used in
Python.

C. World Model

We refer to the world model as the container which holds all
of the relevant, contextual information related to autonomous
operations. This approach is driven by our experiences in
developing autonomy solutions, where inevitably, without ex-
plicit foresight and design, data products generated by different
components in the architecture tend to exist in different places,
with different methods of access and stored in different for-
mats. The world model is meant to consolidate this information
for a more integrated and holistic approach to promote more
advanced autonomy solutions. The world model functions as
the single point of reference where modules may look up
information regarding the environment, the system status or
performance, or collaborator information discovered through
the network.

We also see advantages when it comes to data lifetimes.
In practice, the timeline for deployment and recovery of
numerous unmanned marine systems is highly dynamic, with
elements being added and removed to the operation continu-
ously for logistical and operational reasons. The concept of a
squad mission starting and ending for all units at the same time
is unrealistic and impractical. So, it is useful to have long term
knowledge of the events, schedule, tasking and other mission
data, even if a given platform was not activated for the entire
duration. Using a centralised world model ensures that client
modules that need access to historical data can rely on central
lifetime guarantees, as opposed to having to reconstruct a local
world model from different sources.

Specifically with respect to D2CAF, the world model tracks
two basic types of information: that relating to tasks and col-
laborators. The elements of the collaborator and task models
are based on data received through the network, regarding
task creation and prosecution, and squad member status. The
implementation of the task and collaborator interfaces and
tools are described in Fig. 4 and Fig. 5.
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Fig. 5. The interaction and management of collaborators and their status is
handled by a CollaboratorManager. Collaborators can be special-
ized to provide functionality that is more coupled to the specific algorithm
employed for task allocation.

D. Agent Integration

In order to integrate a new system into the D2CAF
environment, developers must specialize a base class, the
VehicleAdapter, as shown in Fig. 6. Typically this in-
volves a conversion between the single- and multi-vehicle
data models for status and task execution information. In
practice we have found that this realization must sometimes
provide task-centric state management to systems that don’t
have native concepts of task identification. Note that the con-
crete implementations here may use the codec infrastructure
(denoted as Subscriber subclasses). In related work outside
the scope of this publication, we are also working on ways to
normalize this interface, such that the same tasking interface
may be presented to the D2CAF layer, regardless of the task
execution implementation in the single-agent layer (see Fig. 1).

Part of this interface between the agent and D2CAF is
the description of task capabilities. We consider a capability
description to be a description of the platforms ability to fulfil
a task request. The capability of a platform may vary over time,
depending on the system’s status or the status of subsystems
(i.e. sensors or processing chains). Additionally, part of the
interface includes a performance prediction capability. Basi-
cally, D2CAF can request from the single-agent perspective
what the expected performance (e.g. energy cost, coverage,
duration) would be for a specific instance of a task. This
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Fig. 6. For a specific type of platform, integrators implement a concrete
VehicleAdapter subclass that handles the job of interfacing with the
vehicle autonomy system.

information is made available to the task allocation algorithm,
such that the specifics of platform can be decoupled from the
total score calculation. For the estimation of the performance
of foreign squad members, simpler models are used to estimate
their performance.

E. Operator Interface

We have also implemented a diagnostic/monitoring API
which is exposed over the local network via JSON-RPC, [6]
over ZeroMQ, [7]. Again using the launch-time plugin con-
figuration, the architecture in Fig. 1 can be launched without
an Agent in a topside mode with the monitoring interface
enabled. Then we connect a local webserver via the API to the
daemon to receive information about collaborators and tasks
overheard through the network, publishing this information
as a dynamic website to provide operators with situational
awareness. This API also allows the web service to inject new
tasks generated by the user, which is then propagated by the
D2CAF service into the network.

IV. TASK ALLOCATION EXPERIMENTS

The subject framework has been a critical tool in the
development of task allocation algorithms for real operational
domains.

A. Task Domain

We have deployed D2CAF in several in-field trials, con-
necting assets with different task capabilities to collaboratively
generate, distribute and allocate tasks. Our particular domain
is that of naval mine countermeasures (MCM), a defence
application that is at the forefront of operational use of AUV
systems.

Our D2CAF-connected squad consists typically of a large-
area survey vehicle with a SAS (CMRE’s MUSCLE AUV),
and a number of heterogeneous reacquisition systems (such
as Bluefin 21 or REMUS 100 AUVs), some of which may be
platforms of opportunity that are subsumed into the squad.



Conceptually, MCM consists of a high level clearance
task, which decomposes into a search/exploration task (usu-
ally called a survey) followed by subsequent reacquisition,
identification, and neutralization tasks to be performed on
targets discovered during the survey. Furthermore, the typical
sensors required (or most well suited) for the survey task,
versus the subsequent requisition/identification/neutralization
tasks are quite different. Underwater surveys in MCM are
usually performed with long range side-scan or synthetic
aperture sonars (SSS, SAS), which may have ranges in the
order of 100m. The following three phases (reacquisition,
identification and neutralization) require higher resolution,
closer range sensors, such as short range sonars, and optical
or acoustic cameras, with less than 10m range. Moreover
the mobility dynamics of a survey-capable vehicle may be
quite different to those of a follow-on system, where a survey
vehicle might need to be highly stable directionally, and the
follow-on systems may need more manoeuvrability.

B. Task Allocation

The first task allocation strategy implemented in D2CAF
derives strongly from the well-known L-ALLIANCE ([8]).
In short summary, individual agents model the utility for
individual scores based on concepts of cost (what is the cost
of performing a given task), impatience (how long has a given
task been unfulfilled) and acquiescence (how well might other
agents perform the task relative to the given platform). This
“activation” approach is inspired by biological systems, where
the decision to do a specific action is a summation of many
contributing factors.

Additionally, in the current approach, each instance of
the task allocation algorithm (i.e. in each D2CAF instance)
predicts the scoring for all known unit elements. That is,
the performance of each task in every remote collaborator is
locally estimated, and used as a factor in the selection of tasks
to execute.

It is important to say that our task handling approach
makes few assumptions about the quality of service of a
given networking infrastructure. The implemented solutions
for task selection use very low data rates that are typical of
underwater networks (tens of bytes per minute). Moreover, loss
of connectivity is naturally assumed, with some timeout and
backoff mechanisms used to mitigate failures during periods
of blackout. In the worst cases, the implemented algorithms
fails back to a simple single vehicle task scheduler.

Our approach is still highly developmental, and will be the
subject of follow-on publications.

C. Experimental Activities

The major in-water event for D2CAF in its current form
took place in May 2018, where it was used to connect different
mine hunting AUVs to perform mine clearance operations in
an exercise context. CMRE participated in the Italian MINEX
2018 with the MUSCLE and BlackCAT AUVs, which are
21 inch Bluefin vehicles adapted as research platforms sup-
porting the development of advanced autonomy solution for

mine countermeasures activities. The MUSCLE specializes in
MCM wide-area survey tasks, with a high resolution synthetic
aperture sonar (SAS), algorithms that run online for automatic
target recognition (ATR, [9]), and additional capabilities for
the in situ estimation of sensor coverage and data quality.
The BlackCAT system is focused on reacquisition tasks, where
contacts of interest are targeted specifically using other sensing
modalities, including acoustic and optical cameras, as well as
a multi-beam echo sounder (MBES, [10]). Additionally, the
Italian Navy, the Marina Militare, participated in the D2CAF
serials with their REMUS100 AUV, an operational unit that is
part of the Italian minehunting command (MARICODRAG).

In these serials, during which D2CAF was deployed for the
first time in its current form, both of the CMRE assets carried
as part of the onboard software their respective D2CAF agents.
The REMUS system was operated in detached mode, where
the responsible agent for the vehicle tasking was instantiated
as part of the topside infrastructure. In these configuration, the
MUSCLE AUV would elect to perform survey tasks, as they
matched most closely to its own capability and availability.
During the execution of the survey, based on the onboard
processing results, the MUSCLE would then dynamically
generate new reacquisition tasks and disseminate them to the
network. The REMUS and BlackCAT AUVs would then select
the follow on tasks to perform based on the scoring method
described above.

V. DISCUSSION AND CONCLUSION

The development of D2CAF has been driven largely by
the requirement to integrate any task allocation algorithms
into a real fleet of heterogeneous systems. The complexity in
handling systems in operational scenarios is seen as a problem
orthogonally related to the underlying research question about
autonomous system tasking. Thus we have created D2CAF
to fill the gap between the host platform and the researchers
prototype, to encourage more rapid development and ease of
experimentation.

A. Relation to broader scope

CMRE is also involved in other efforts relating to task
allocation and multi-agent robotics in the maritime domain.
For example, for a different defence domain (anti-submarine
warfare, ASW), our colleagues have taken a market-based
approach in their development of Periodic Auctions Dis-
tributed Algorithm (PADA) [11]. We see our effort here as
complementary, in that D2CAF can provide the infrastructure
inside of which PADA may be implemented and deployed for
operations.

A similarly related commercial product is Neptune, [12],
which is found frequently in operational contexts. D2CAF and
Neptune are somewhat disjoint in their particular functional-
ities, mostly in that Neptune also provides a task execution
framework, and is highly targeted (at least in its current form)
towards MCM explicitly.

Lastly, CMRE is involved with a NATO panel activity
(under the purview of the Collaboration Support Office,



CSO) titled “SCI-288: Autonomy in Communications Lim-
ited Environments”, [13], [14]. One of the focus points of
the activity is a broader agreement regarding the prescient
information required to enable collaborative task handling
inside squads of operational or near-operational unmanned
systems. Again, D2CAF has a complementary design, where
the SCI-288 outcomes may inform the specific design of the
inter-vehicle communications messaging layer that connects
disparate D2CAF instances.

B. Way Forward
The implemented task allocation algorithm is subject to

ongoing testing (at sea and in simulation) and reporting. There
are many related problems which we hope to work on:

1) Task decomposition: We currently work with a “flat”
model of tasks — that is, tasks are not conceptually decom-
posed from a higher level task.

2) Parallel Execution: Task execution on a single platform,
from the perspective of allocation, is constrained to be serial
process, which may be suboptimal on more advanced systems.

3) Waterspace Management: Waterspace management is an
issue not currently addressed from the D2CAF architecture or
the implemented algorithms, but requires explicit attention.

4) Interoperability: We are hoping to exercise more diverse
task handling algorithms within our framework to exercise and
validate the extensibility of underlying models and interfaces.

∗ ∗ ∗

We have developed and tested in real AUV operations the
Distributed/Decoupled Collaborative Autonomy Framework.
This D2CAF is designed as a framework upon which prototype
approaches for multi-system task handling may be imple-
mented. There is a high level of customisability and modularity
which we think provides a tool-rich environment in which
to deploy task handling prototype algorithms for research
purposes. The framework we have described is in active use on
real embedded systems operating in real scenarios, supporting
the ongoing refinement of algorithms addressing particularly
the domain of autonomous naval mine countermeasures.
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